
JUISI, Vol. 02, No. 02, Agustus 2016	 	 	 41	

Andre Wenas: Improving Data Warehouse Performance… ISSN: 2460-1306

Improving Data Warehouse Performance Using
Filesystem Technology with GZIP, LZJB and ZLE

Compression
Andre Wenas1, Suharjito2

Abstract— Data warehouse application is commonly used by
many corporations as an analytical platform to develop
marketing strategy and give advantage edge to their
business. Many times, data warehouse platform need to
manage huge amount of data as it needs to extract, load and
transform enterprise data from many sources. To improve
performance of data warehouse system, compression has
been used in various ways, both at database layer or at
filesystem layer. Compression brings an other benefit as it
reduce storage capacity therefore reduce cost. However
compression also add data processing that may impact to
overall application response time. In this research, three
different compression algorithms which are zle, lzjb and
gzip were tested on data warehouse filesystem to understand
the performance impact and the capacity saving benefit.
Using swingbench as the benchmark tool and oracle
database 12c, it shows that zle is the best compression
algoritm with performance improvement of 92%, follows by
lzjb with 78% performance improvement and gzip with
53% improvement. In terms of compression ratio, gzip can
deliver the highest with 3.31 compression ratio, follows by
lzjb with 2.17 compression ratio and zle with 1.55
compression ratio. AW.

Keywords: data warehouse; performance; compression;
zle; lzjb; gzip

I. INTRODUCTION

The complexity of the modern business world
contributes to the complexity of today's IT infrastructure.
Growth, mergers, acquisitions and long-term IT
investment has created the technology landscape is
characterized by silos of information held on different
systems in different departments, subsidiaries and
geographies. More data captured and stored by the
business now than ever before. The explosion of data and
data processing applications continue to be a challenge.
For example, Infosys, a multinational company in India,
the data warehouse system grown by 45% with

transaction volume growing by 110% annually [1].

The amount of data that must be processed increases
exponentially, so it takes a certain method that can store
data more efficiently over a long period. One method for
reducing the amount of data storage is to use a
compression (Roth and Van Horn, 1993). Compression
technology is widely used to store individual files and is
used to store data in a relational database in corporations.

As data warehouse is one of the important applications
for commercial business, therefore improving
performance and reducing storage capacity will bring
significant benefits for the business. For example, with a
compression ratio of 2:1, businesses will spend half of
their IT budget to meet the same requirements. It will help
directly to the profitability of the company. At the same
time, improving the performance will give better
customer satisfaction [2].
In this study, we want to see whether data compression
can increase performance of data warehouse using the
latest hardware technology. We need to observe how
much increase in performance, impact on CPU overhead
and saving compression ratio.

There are few option where to implement
compression, compression can be done at the database
layer or at the filesystem layer. At filesystem layer that
can perform compression transparently, filesystem will
perform compression processing in memory cache that
can reduce the overhead of compression and uncompress
processes, and accelerate the writing of the data that has
been compressed into a disk [3].

In this paper, we are experimenting to use filesystem
compression with zle, lzjb and gzip compression to
improve data warehouse performance. A simulated data
warehouse benchmark was conducted to measure the
performance improvement, compression ratio, response
time and CPU overhead against filesystem without
compression and oracle database ACO compression.

Compression refers to the process of reducing the
amount of data of the original information. Database
compression is widely used in data management to
performance improvement and to save storage space. Data
compression is the art of finding a short description for
the long string. each compression algorithm can be
decomposed into zero or more transformations, model,
and program [4]. The goal of data compression is to
reduce the redundancy of data stored or communicated,
thereby increasing the effective data density. Data
compression has important applications in the areas of file
storage and distributed systems [2].

1Information Technology Graduate Program, Bina
Nusantara University Information Technology Faculty,e-mail:
andre.wenas@gmail.com

2Information Technology Graduate Program, Bina
Nusantara University Information Technology Faculty,e-mail:
suharjito@binus.edu

42	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 JUISI, Vol. 02, No. 02, Agustus 2016	

ISSN: 2460-1306 Andre Wenas: Improving Data Warehouse Performance…

Data compression is often referred to as coding, in
which the coding is a very general term that covers any
specific data representations that meet specific needs.
Information theory is defined as the study of efficient
coding and its consequences, such as the transmission
speed and probability of error. Data compression can be
regarded as a branch of information theory in which the
main objective is to minimize the amount of data
transferred. A simple characterization data compression is
that it involves changing a string of characters in multiple
representations (such as ASCII) into a new string (bits,
for example) which contains the same information but
whose length is as small as possible [5]. Lossless
compression algorithm for text can be divided into 2
groups: compression algorithm based on statistical
entropy encoding for example Shannon-Fano coding,
Huffman coding, Adaptive coding and compression
algorithms based encoding directory such as Lempel-Ziv,
LZ77 and LZ78 [6] [7].

While data compression have significant benefits for
businesses, also inherited a problem: the overhead of
compression / decompression [3]. Overhead issued by the
process to compress data and expansion process to
recover the original data is one of the most serious
weaknesses of the data compression. For some
applications, this overhead can be large enough to prevent
consideration for the use of data compression. On the
other hand, the use of compression will reduce the
amount of data that must be read or written. Reduction of
amount of data that must be read or written will reduce
the number of transactions to storage IO significantly.
Because IO transactions are much slower than data
processing, the use of compression will improve
performance of the database significantly.

In four decades we have witnessed an exponential
growth in computing power. Chip microprocessor
technology used billions of transistors, including multiple
processor cores, running at speeds measured in gigahertz,
and provides more than 4 million times the performance
of the original [8]. On the other hand, the basic
architecture of the disk drive has not changed much since
it was introduced. The growth curve relative performance
(IOPS) of about 25 percent, less than the rate of increase
disk capacity [9]. Very likely that with the latest
technology micro-processor, the CPU is much faster to
process compression / decompression that will help to
improve overall performance.

The effectiveness of the technique of compression
algorithms is determined by three things: the compression
ratio to see the savings capacity, performance
compression and de-compression performance.
Comparison of different lossless compression algorithms
is listed on table 1.

Table 1 – comparison of different compression algorithms

Literature Compression
algorithm

Comparison

[6] Entropy encoding:
Huffman dan
Shannon-Fano.
Directory
encoding: LZW
from Lempel-ziv
family

Compression
ratio: LZW
provides best
ratio, follows by
Huffman and
Shannon-Fano.
Huffman and
Shannon-Fano
compression is
faster than LZW,
whereby for
decompression
LZW is faster than
Shannon-Fano.

[7] Entropy/statistic
encoding:
Shannon-Fano
Coding, Huffman
coding, Adaptive
coding, Run
Length encoding
(RLE), Arithmetic
encoding.
Directory
encoding: Lempel-
Ziv family,
LZ77 dan LZ78

Compression
ratio:
Directory
encoding Lempel-
ziv has better
compression ratio
compare to
entropy encoding
family.

This research will use three types of algorithms are

gzip, lzjb and zle. Here is a description of the intended
compression:
- ZLE (Zero Length Encoding) algorithm is a
compression algorithm that eliminates or compress the
data with zero value (zero). With zero data compression
saves storage and accelerate data transmission. This
algorithm is derived from the algorithm RLE (Run Length
Encoding) that belong to the entropy encoding although
some are classified RLE encoding as a separate group.
RLE algorithm is very easy to implement, therefore it has
a very fast performance [10].
- LZJB algorithm (Lempel Ziv Jeff Bonwick) is a
compression algorithm invented by Jeff Bonwick to
perform data compression on ZFS filesystem. This
algorithm is based on the method LZRW1 algorithm that
also included family Lempel-Ziv compression algorithm
by encoding the directory. LZRW algorithms designed to
get the performance as soon as possible so it is suitable
for compression filesystem [10].
- GZIP algorithm is a compression algorithm invented by
Jean Loup gaily and Mark Adler in 1992 and is widely
used in the open-source software, especially Linux. This
algorithm is based on the DEFLATE algorithm is a
combination of LZ77 (including family Lempel-Ziv
algorithms – directory encoding) and Huffman coding
(entropy encoding) [11].

Oracle Advanced Compression Option (ACO)
provides compression capabilities at the database layer to
help boost performance while reducing storage costs. This

JUISI, Vol. 02, No. 02, Agustus 2016	 	 	 43	

Andre Wenas: Improving Data Warehouse Performance… ISSN: 2460-1306

allows database administrators to significantly reduce
database storage for all types of data including relational
data (tables), unstructured (file), an index, and data
backup. Although the cost savings in storage and server
optimization (production, development, QA, Test,
Backup) that can be seen as the most tangible benefit, in
addition to the compression ACO is designed to improve
performance for all infrastructure components, including
memory, network bandwidth and storage [12].

Although research on database compression has been
around almost as long as there is the research database,
the compression method is not widely used in the
database until the 1990s. This may be because in the early
research compression only focused on reducing storage
space and not much see the effects on the performance of
the database. On some of this research, it appears that
although the compression techniques can reduce the
number of IO, but the CPU overhead of compression
process should be reduced as little as possible. Because it
is necessary to find a technique that light compression
algorithm so that the overhead of the compression process
is much less of a reduction in the number of IO [13].
Some research has been done to see the effect of
compression on the data warehouse as listed in table 2.

Table 2 – Literature study on database compression

Liter
ature

Compression
method and
database

Relevance Performance
evaluation

[14] Few
compression
method on
column
oriented
database
such as
RLE, Bit-
Vector
Encoding,
Dictionary,
FOR,
Patching
Technique
on
MonetDB,
VectorWise
dan C-Store
database

Using
experimental
database
instead of
commercial
database

No
performance
test

[15] H-HIBASE
compression
(enhanceme
nt of
HIBASE
compression
).

Shows better
performance
compare to
Oracle 10g.
Still
experimental
stage.

Storage
performance
is 25-40%
better than
Oracle
database 10g
and query
performance
is 10-25%
better than

Oracle
database 10g

[4] ILC
(Iterative
Length
Compression
) on
Microsoft
SQL Server
2008

Showing
high
compress
ratio and
better
performance
. Need to
analyze
database and
create a
model
before doing
compression
.

Compressio
n ratio of
ILC is 2.76.

[16] gzip, lzo dan
snappy
compression
on HBase –
Hadoop
database
column
oriented
data-stores

This study
shows
compression
can reduce
storage
requirement
and improve
performance
on hadoop
database.

Compressio
n ratio: gzip
– 13,4%, lzo
– 20.5%,
snappy –
22.2%.
Encoding
performance
: gzip- 21
MB/s, lzo-
135MB/s,
snappy –
172 MB/s,
Decoding:
gzip –
118MB/s,
lzo –
410MB/s,
snappy –
409MB/s

[13] RLE, Bit-
vector,
Dictionary
single-value
dan
dictionary
multi-value
compression
on C-vector
database

This study
compares
response
time of 4
different
compression
s on small
and big size
of data.

dictionary
single and
multiple
value
compression
showing
better
performance
. RLE
compression
showing
worse
performance
on small
data and C
vector
showing
worse
performance
on big data.

44	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 JUISI, Vol. 02, No. 02, Agustus 2016	

ISSN: 2460-1306 Andre Wenas: Improving Data Warehouse Performance…

Research in the field of data compression is usually
aimed at the individual files. The use of compression on
individual files already widely used and many benefits in
everyday use such as data storage or sending files by
email. However, the use of compression of individual
files is not practical for database transactions since the
database is usually stored in a file record is great and
always changing. Some particular database also has the
ability to perform compression in the database, such as
Oracle databases. But requires additional license fees are
not cheap. Because the researchers wanted to use
compression technology in the filesystem. So from the
database do not need no additional license fee, also do not
need to compress individual files manually.
In this connection, will give rise to questions such as:

1. Technology filesystem what can be used?
2. How much overhead cpu to do the
compression?
3. Is the compression technology will improve

performance? Or otherwise slow down the
performance of the database?

4. How much storage capacity savings?
In this research we use oracle database, Solaris 11

operating system and ZFS filesystem. ZFS filesystem has
features that can make transparent the data compression.
This means that compression is not necessary in
individual files, but enough was set on a particular file
system, automatically all the files in the filesystem will
compress the appropriate algorithm is selected.

II. METHODS

Research in the field of data compression is usually
directed at the individual files. The use of compression on
the individual files are already widely used, and many
benefits in everyday use such as data storage or
transmission of files via email. However, the use of
compression of individual files to a database transaction
is not practical because it is usually stored in a database
record files are huge and ever-changing. In this research
the authors use the Solaris 11 operating system and ZFS
filesystem. ZFS file system has features that can make
transparent the data compression. This means that
compression is not necessary in individual files, but
simply set on a particular file system, automatically all
the files in the file system will compress with appropriate
algorithm is selected.

The steps of this study are: literature studies,
instrument installation, implementation of compression
for data warehouse, data loading, test for 3 compression
algorithms, data collection, analysis of the results and
conclusions and suggestions. In the initial phase of
research begins by determining the background and
purpose of the study as well as defining the scope. The
literature study is done to deepen the understanding of the
compression technology for data warehouse. Moreover,
the study of literature is also conducted to find out the
results of compression technology ever done for the data

warehouse. The second phase of this study is the
installation of instrumentation testing. Tool to be used is
swingbench. In the third phase, carried out the
implementation of compression technology for data
warehouse using Oracle Database 12c with zfs filesystem.
After it is done loading the data for the type of data
warehouse. Furthermore, the tests performance for three
different compression algorithm that is gzip, lzjb and zle.
It will also be measured against the same dataset without
compression (baseline) and compression using
compression techniques ACO from oracle database. In the
sixth stage of data collection that is the compression ratio
and improved performance. In the seventh stage to
analyze the data and then the last stage is to draw
conclusions and make suggestions.

Tool measurement that will be used is swingbench
benchmark tool. Swingbench is a tool to benchmark and
generate load which are designed to test the performance
of Oracle database version 10g, 11g and 12c. Swingbench
have 4 types of tests for different workload
characteristics, namely order entry, sales history, calling
circle and stress test. We will use type test for data
warehouse category was sales history, therefore in this
research will be used test saleshistory. Sales History
based schema "sh" which is included in Oracle Database
11g and 12c and is designed to test the performance of
complex queries against very large tables. This database
is read-only and can be expanded from 1GB to 1TB [17].

Tool swingbench chosen as a measurement tool
because this tool is widely used as a measure of the
performance of companies that provide hardware for data
warehouse such as:

- IBM: in one of his Redbook, IBM uses
swingbench to demonstrate the performance of
data warehouse using IBM Power series server
[18].
- EMC: use swingbench to demonstrate the
performance of the data warehouse using the
EMC VMAX storage [19].
- Oracle: use swingbench to show performance
data warehouse appliance using a database [20].
- VMware: use swingbench to demonstrate the
performance of data warehouse using flash
technology read cache [21].
- Cisco: use swingbench to demonstrate the
performance of the data warehouse using UCS
and EMC products clarion storage [22].

Sales History database used to wear a star schema. Is a
simple star schema data warehouse schema. It is called a
star schema because the diagram resembles a star schema
star, with points radiating from a center. Star center
consists of one or more tables facts and points of the star
are the dimension tables as in figure-1.

JUISI, Vol. 02, No. 02, Agustus 2016	 	 	 45	

Andre Wenas: Improving Data Warehouse Performance… ISSN: 2460-1306

Figure-1 Star schema
In the measurement, carried out three different types

of transactions to represent the data warehouse load. The
three types of transaction are listed in table 3.

Table 3 – Testing three types of transactions

Transaction type SQL statement
Sales rollup by month and
channel

SELECT channels.channel_desc, calendar_month_desc,
 countries.country_iso_code,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES$
FROM sales, customers, times, channels, countries
WHERE sales.time_id=times.time_id
 AND sales.cust_id=customers.cust_id
 AND customers.country_id = countries.country_id
 AND sales.channel_id = channels.channel_id
 AND channels.channel_desc IN ('Internet','Partners')
 AND times.calendar_month_desc IN ('2005-06','2005-07','2005-08','2005-09','2005-10')
 AND countries.country_iso_code IN ('NL','NZ')
GROUP BY
 ROLLUP(channels.channel_desc, calendar_month_desc, countries.country_iso_code)

Sales within quarter by
country

SELECT SUM(amount_sold),
 t.calendar_month_desc,
 t.calendar_week_number,
 c.country_name
FROM sales s,
 times t,
 countries c,
 customers cu
WHERE s.time_id = t.time_id
AND t.calendar_month_desc = '2011-01'
AND cu.country_id = c.country_id
AND s.cust_id = cu.cust_id
AND c.country_iso_code = 'AU'
group by t.calendar_month_desc,
t.calendar_week_number,
c.country_name

46	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 JUISI, Vol. 02, No. 02, Agustus 2016	

ISSN: 2460-1306 Andre Wenas: Improving Data Warehouse Performance…

Top Sales by quarter SELECT *
FROM
 (SELECT times.calendar_quarter_desc,
 customers.cust_first_name,
 customers.cust_last_name,
 customers.cust_id,
 SUM(sales.amount_sold),
 rank() over(PARTITION BY times.calendar_quarter_desc
 ORDER BY SUM(amount_sold) DESC) AS
 rank_within_quarter
 FROM sales,
 customers,
 times
 WHERE sales.cust_id = customers.cust_id
 AND times.calendar_quarter_desc = '2006-1'
 AND times.time_id = sales.time_id
 GROUP BY customers.cust_id,
 customers.cust_first_name,
 customers.cust_last_name,
 customers.cust_id,
 times.calendar_quarter_desc)
WHERE rank_within_quarter < 16

Testing was done using the following machine
configuration:

- Number of CPU cores: 4
- Memory size: 16 GB
- Storage: internal storage 1x 300GB for OS and

4x 300GB with RAID 0.
- Operating system: Solaris 11.2
After OS installation, the zfs filesystem was created

using the following command:
zpool create backend
c0t5000CCA0162A4D60d0 \
c0t5000CCA0162A4D60d0
c0t5000CCA01632AE1Cd0 \
c0t5000CCA0162C5CBCd0

Creation of filesystem with compression to store the
data using the following command:

zfs create backend/baseline
zfs create backend/aco
zfs create backend/zle
zfs create backend/lzjb
zfs create backend/gzip

Next step was setting up the compression using the
following command:

zfs set compression=zle backend/zle
zfs set compression=lzjb backend/lzjb
zfs set compression=gzip backend/gzip

After this setup, all data that stored in the filesystem
will be compressed with specific compression algorithm.
To find out the compression ratio of each filesystem:

zfs get compressratio backend/zle
For Oracle ACO compression, the compression setup

was done during data loading.

The next stage is to install Oracle enterprise database
12c in all filesystems that has been created which are
backend / baseline, backend / aco, backend / zle, backend
/ lzjb and backend / gzip. After oracle database
installation was done swingbench tools that will be used
to create data and conduct trials. Loading data using
scripts facilities already provided by swingbench. This
script is called by shwizard. Again the data loading
process was conducted in all five filesystems repeatedly.
While loading data ACO filesystem backend / aco,
advanced compression option must be selected as shown
in figure 2.

Figure 2 – Choosing advanced compression during data
loading to test ACO

Execution of the test was done using the following
command:

/charbench -c shconfig.xml -r hasil/result.xml -
stats full -dumptx -dumptxdir hasil.

JUISI, Vol. 02, No. 02, Agustus 2016	 	 	 47	

Andre Wenas: Improving Data Warehouse Performance… ISSN: 2460-1306

III. RESULT

Measurements were made against a database with the
same amount of data and the same number of users for

each 20 minutes. The results of these measurements to get
the number of transactions, as shown in Table 4.

Table 4 – comparison of number of transactions

Database Number of
transaction in 20
minutes

Average transaction
per second

Performance
improvement

Without compression -
baseline

156 7.8 -

With ACO compression 198 9.9 26%
With ZLE compression 300 15 92%
With LZJB compression 279 13.95 78%
With GZIP compression 239 11.95 53%

Figure 3 – Throughput comparison

With filesystem compression the number of

transactions was improved by 30% to 100%. By using
ACO compression, performance was increased by 26%,
lower when compared to the filesystem compression.

Compression ratio shows how much storage can be
saved from the use of compression. The higher the

compression ratio, the more-efficient use of storage and
cost savings. Comparison of the compression ratio
obtained from experiments performed is shown in Table
5.

Table 5 – comparison of compression ratio

Compression type Compression ratio
Baseline – without compression 1

ACO 1.3
ZLE 1.55
LZJB 2.17
GZIP 3.31

Number	 of	 Transac/ons	

48	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 JUISI, Vol. 02, No. 02, Agustus 2016	

ISSN: 2460-1306 Andre Wenas: Improving Data Warehouse Performance…

Figure 4 – compression ratio

Figure 4 shows gzip compression helps save storage

capacity the most followed by lzjb, zle and aco. This is
consistent with other literature that shows the encoding
compression group directory including the group Lempel-
Ziv provide better compression ratio than RLE
compression group [7].

Average utilization while running the test on different

compression type is shown in table 5 and figure 4.

Table 6 – CPU utilization comparison

Compression type Average
% user CPU

Average
%system CPU

Overhead %system
CPU to process
compression

Baseline 7 1 -
ACO 14 2 1
ZLE 22 2 1
LZJB 19 5 4
GZIP 14 11 10

Figure 5 – CPU utilization

Compression	 Ra/o	

%
	

CPU	 U/liza/on	

ACO	

Baseline	

GZIP	

LZJB	

ZLE	

JUISI, Vol. 02, No. 02, Agustus 2016	 	 	 49	

Andre Wenas: Improving Data Warehouse Performance… ISSN: 2460-1306

Table 5 shows CPU usage to run user mode looks to

increase with compression. This is because the database
can do more transactions than without compression.
While the use of the CPU for increased system visible
mode to perform the compression and decompression of
data. This is consistent with other literature review that
zle algorithm is the simplest therefore it almost has no
processing overhead [10].While gzip based on the

DEFLATE algorithm is a combination of LZ77 (including
family Lempel-Ziv algorithms - encoding group
directory) and Huffman coding (entropy encoding group)
[11], because it uses two compression methods once so
has the longest compression process and result in high
CPU overhead.

Response time comparison during the test is shown in
table 6 and figure 5.

Table 7 – Response time comparison

Transaction type Compression Minimum
(ms)

Average
(ms)

Maximum
(ms)

Rollup by Month and Channel

Baseline 49,136 205,388 347,436
ACO 70,159 146,543 277,050
ZLE 31,327 102,107 179,215
LZJB 35,679 107,040 184,698
GZIP 46,236 126,223 230,842

Top Sales by Quarter

Baseline 77,234 252,924 397,200
ACO 54,521 180,828 285,186
ZLE 44,856 116,660 206,228
LZJB 44,138 126,154 224,033
GZIP 43,161 149,613 241,453

Sales within Quarter by
Country

Baseline 48,162 199,312 350,949
ACO 54,582 143,375 235,511
ZLE 35,363 104,787 179,202
LZJB 46,793 106,359 181,566
GZIP 46,082 124,903 216,585

Figure 6 – Average response time

Average	 Response	 Time	 (ms)	

50	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 JUISI, Vol. 02, No. 02, Agustus 2016	

ISSN: 2460-1306 Andre Wenas: Improving Data Warehouse Performance…

Table 7 and figure 6 shows filesystem compression
can reduce the response time. However, the higher the
compression ratio, the smaller the reduction of response
time. This is because the more dense compression is done,
the higher overhead of compression and decompression
process.
Based on some of the observations above, the overall
performance of the database with the most excellent ZLE
compression, but judging from the GZIP compression
ratio has the best ratio GZIP but in this study does not
give a good performance. This is because the gzip
compression algorithm requires more intensive
compression process indicated by the high average CPU
utilization system for compression by 10%. The gzip
compression process into high overhead causes the
average response time higher than zle or lzjb algorithms
and result in lower throughput performance gzip
algorithm.

IV. CONCLUSION

From the test results and measurements made for the
performance of the data warehouse with different types of
compression can be summed up as follows:

- The use of compression at the level of compression
in the filesystem or database level can improve
data warehouse performance compared with no
compression.

- Improved performance using compressed
filesystem better than the use of advanced
compression techniques oracle option or ACO.

- Use of compression will increase CPU utilization.
The higher the compression ratio, the higher the
CPU is required. The addition of the CPU load is
approximately 1% to 10% depending on the type
of compression used.

- Filesystem compression saves storage capacity
utilization significantly from 155% to 331% while
the ACO compression techniques can save storage
at 130%.

- The use of filesystem compression will increase the
response time by 30% to 50%.

- Improved performance of the largest when using
this type of compression zle, but compression zle
has the lowest compression ratio.

- Increasing the highest compression ratio when
using gzip compression types, but gzip
compression requires additional CPU maximum of
10%.

In keeping with the focus of this study was to
determine the increase in performance datawarehouse it
can be concluded that the filesystem compression
algorithms zle can improve performance by 92% with the
best compression ratio of 1.5x or 150%. If desired
compression ratio greater then lzjb algorithm can be
selected with a compression ratio of 2.17x or 217%
despite the increase in performance only by 53%.

Compared with ACO compression, filesystem
compression does not depend on of database being used.
So that could be used for other databases such as MySQL,
Postgress, Sybase and so on. Although the increase in
performance for other types of databases can be varied
and needs further research. While the benefits of using
compression techniques oracle ACO, can be done in a
variety of operating systems and file systems supported
by Oracle database.

V. REFERENCES
[1] S. Sharma and R. Jain, “Enhancing Business Intelligence using

Data Warehousing  : A Multi Case Analysis,” Int. J. Adv. Res.
Comput. Sci. Manag. Stud., vol. 1, no. 7, pp. 160–167, 2013.

[2] M. A. Roth and S. J. Van Horn, “Database compression,” Sigmod
Record, vol. 22, no. 3, pp. 31–39, 1993.

[3] M.A. Bassiouni, “Data Compression in Scientific and Statistical
Databases,” IEEE Transactions on Software Engineering, vol. SE-
11, no. 10, pp.1047-1058, 1985.

[4] M. Murugesan and T. Ravichandran, “Evaluate Database
Compression Performance and Parallel Backup,” International
Journal of Database Management System (IJDMS), vol. 5, no. 4,
2013.

[5] D.A. Lelewer and D. S. Hirschberg, “Data Compression,” ACM
Comput. Surv., vol 19, no. 3, pp. 261-296, 1987.

[6] S. Shanmugasundaram and R. Lourdusamy, “A Comparative
Study of Text Compression Algoritms”, International Journal of
Wisdom Based Computing, vol. 1, no.3, pp. 68, 2011.

[7] A.K. Bhattacharjee, T. Bej, and S. Agarwal, “Comparison Study of
Lossless Data Compression Algoritms for Text Data”, IOSR
Journal of Computer Engineering (IOSR-JCE), pp.15-19, 2013.

[8] A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M.
Horowitz, “CPU DB: Recording Microprocessor History”, 2012.
[Online]. Available: http://queue.acm.org/detail.cfm?id=2181798.
[Accessed: 14- Jun- 2015].

[9] E. Grochowski and R.D. Halem, “Technological impact of
magnetic hard disk drives on storage systems”, IBM Systems
Journal, ProQuest Science Journals, 338, 2003.

[10] Y. Rathore, M.K. Ahirwar and R. Pandey, “A Brief Study of Data
Compression Algorithms”, International Journal of Computer
Science and Information Security (IJCSIS),vol. 11, no. 10, 2013.

[11] W. Chang, B. Fang, X. Yun and S. Wang, “The Block Lossless
Data Compression Algorithm”, International Journal of Computer
Science and Network Security (IJCSNS), vol.9, no.10, pp. 116,
2009.

[12] Oracle, “Oracle Advanced Compression with Oracle”, 2015.
[Online]. Available:
http://www.oracle.com/technetwork/database/options/compression
/advanced-compression-wp-12c-1896128.pdf. [Accessed: 14- Jun-
2015].

[13] D. Abadi, S. Madden and M. Ferreira, “Integrating compression
and execution in column-oriented database systems”, Proceedings
of the 2006 ACM SIGMOD international conference on
Management of data, pp. 671-682, 2006.

[14] D. Abadi, P. Boncz, S. Hrizopoulos, S. Idreos, and S. Madden,
“The Design and Implementation of Modern Column-Oriented
Database Systems”, Foundations and Trends in Databases, vol. 5,
no. 3, pp. 197-280, 2012.

[15] A. Habib, A. S. Hoque and M .S. Rahman, “High Performance
Query operations on Compressed Database”, International Journal
of Database Theory and Application, vol. 5, no. 3, 2012.

[16] P. Raichand and R.R. Aggarwal, A Short Survey of Data
Compression Techniques for Column Oriented Databases. Journal
of Global Research in Computer Science, vol. 4, no. 7, 2013.

[17] D. Giles, Swingbench, 2015. [Online]. Available:
http://www.dominicgiles.com/Swingbench.pdf [Accessed: 14- Jun-
2015].

JUISI, Vol. 02, No. 02, Agustus 2016	 	 	 51	

Andre Wenas: Improving Data Warehouse Performance… ISSN: 2460-1306

[18] D. Quintero, “IBM Power Systems Performance Guide
Implementing and Optimizing”, 2013. [Online]. Available:
http://www.redbooks.ibm.com/redbooks/pdfs/sg248080.pdf.
[Accessed: 14- Jun- 2015].

[19] EMC, “EMC Tiered Storage for Oracle Database 11g - Data
Warehouse”, 2010. [Online]. Available:
http://estonia.emc.com/collateral/solutions/white-papers/h7068-
tiered-storage-oracle-vmax-fast-ionix-wp.pdf. [Accessed: 14- Jun-
2015].

[20] Ramachandran, “Evaluating and Comparing Oracle Database
Appliance”, 2014. [Online]. Available:
http://www.oracle.com/technetwork/database/ database-
appliance/documentation/oda-eval-comparing-performance-
1895230.pdf. [Accessed: 14- Jun- 2015].

[21] S. Sivathanu, “Performance of vSphere Flash Read Cache in
VMware Vsphere 5.5.”, [Online]. Available:
http://www.vmware.com/files/pdf/ techpaper/vfrc-perf-
vsphere55.pdf. [Accessed: 14- Jun- 2015].

[22] Cisco, “Deploying Oracle Real Application Clusters on the Cisco
Unified Computing System with EMC Clariion Storage”, 2012.
[Online]. Available:
http://www.cisco.com/c/en/us/products/collateral/servers-unified-
computing/ucs-b-series-blade-servers/white_paper_c11-
562881.pdf. [Accessed: 14- Jun- 2015].	

